DECO: Polishing Python Parallel Programming

Alex Sherman, Peter Den Hartog
University of Wisconsin - Madison
asherman@cs.wisc.edu, denhartog@wisc.edu

May 2016

Abstract

Modern computer hardware is becoming in-
creasingly parallel, forcing programmers to de-
velop parallel programs in order to achieve best
performance. Parallel programming is difficult,
especially for scientific programmers whose pro-
grams now suffer performance penalties for their
lack of parallelism. We propose a simplifica-
tion of traditionally parallel programming tech-
niques that minimizes programmer interaction
and does not require a knowledge of parallel pro-
gramming. Our solution consists of two Python
decorators, and typically requires only two lines
of changes in order to parallelize existing serial
programs.

1 Introduction

Utilizing parallel hardware has never been more
important, and will only become more impor-
tant. Unfortunately, in the case of many scien-
tific programs, there is rampant under utiliza-
tion of CPU resources due to a lack of paral-
lel programming. This is not a result of the
programs being serial in nature, but rather a
lack of parallel programming models suited to
scientific programmers [5]. Existing program-
ming models do not address some of the impor-
tant issues that should be considered in the case
of scientific computing. Specifically, a parallel
programming model for scientific programmers
should be simple to use even for programmers
with little knowledge in the area of parallel com-
puting. So far few models meet this criteria,
and the ones that do still have room for im-

provement. For this reason we propose our own
solution, a minimal interface allowing a wider
audience to better utilize the parallel CPU re-
sources their programs could benefit from.

2 Related Work

Our work is modeled closely after an existing
library called Pydron, and both libraries share
some similarities with other existing models in-
cluding OpenMP and Star-P. The main similar-
ity between libraries in this class of parallel pro-
gramming models is that they provide an API
where the programmer is tasked only with iden-
tifying sections of code that can be run in par-
allel instead of synchronizing specific resources.
This is a powerful abstraction, but depending
on its implementation may come at the cost of
some major restrictions.

OpenMP relies on compiler directives as a
way for the programmer to denote parallel sec-
tions of code [3]. This limits implementations
to compiled languages like C/C++ which we
find to be an unacceptable restriction when
interpreted languages like Python are becom-
ing more common in the scientific community.
Additionally OpenMP relies on shared mem-
ory, further limiting its scope to operating on
a single machine rather than a distributed sys-
tem unless major modifications to run on a
distributed shared memory platform, such as
EDSM [2], are made.

Pydron and Star-P both target problems
which are embarrassingly parallel (as does
DECO). Star-P is an interactive Matlab en-
vironment which automatically parallelizes the

@concurrent #ldentify the concurrent function
def do_work(key, data):
data[key] = some_calculations (...
data = {}
def run():

for key in data:
do_work (key , data)

do_work.wait () # wait for workers to finish and synchronize mutations

Figure 1: Psuedo-code for example use of the concurrent decorator without automatic synchroniza-

tion.

execution of side-effect free functions [I]. One
of the goals for DECO was to avoid Star-P’s re-
quirement for explicit calls before and after a
parallelized call to transfer data to and from its
workers. Pydron operates in the same way but
avoids extra function calls around the concur-
rent function by making use of Python decora-
tors [4], which we have incorporated into DECO
as well.

Pydron comes much closer to an appropri-
ate solution for scientific computing applica-
tions. In Pydron, a programmer must mark
functions that are free of side-effects and addi-
tionally mark a function whose body they wish
to have parallelized. The parallelized function
will be inspected for any calls to side-effect free
functions and those will be executed in paral-
lel. Pydron supports many forms of paralleliza-
tion including multi-processing and cloud com-
puting, removing many of the restrictions that
would be encountered in OpenMP. However this
model only works if the programmer has writ-
ten side effect free functions, meaning functions
which do not mutate any program state and
only return a value. We find this to be overly re-
strictive as many scientific programs operate by
iteratively modifying small sections of a larger
data structure. Programs like these are difficult
to parallelize in Pydron.

3 Decorated Concurrency

We propose an alternative solution to these ex-
isting concurrent programming techniques that
we call decorated concurrency or DECO. This
model very closely resembles Pydron’s model
of decorating functions we wish to execute in
parallel and functions which call the parallel
function, but it differs by altering some of the
restrictions Pydron imposes. Rather than re-
quiring the concurrent function to be purely
functional, DECO allows the concurrent func-
tion to mutate arguments and global variables.
DECO works by synchronizing these mutations
from worker processes back to the main thread
in a deterministic way. However, DECO does
impose one important restriction on the pro-
gram: all mutations may only by index based.
This restriction allows DECO to require no ex-
plicit synchronization, instead inferring it and
automatically inserting synchronization into the
program.

4 Using DECO

In the general case, adapting a program for use
with DECO would mean finding a worker func-
tion that is being called in the body of a loop
and is working on independent sections of data
in each call. For example, a function interpo-
lating and transforming a given latitude range
of satellite data with each call and storing it
under a new key in a dictionary would be an
ideal case for speedup. The function is then

@concurrent
def do_work(key):

return some _calculations (...)

data = {}
@synchronized
def run():
for key in data:
data[key| = do_work(key)
print data # data will

#ldentify the concurrent function

be automatically synchronized here

Figure 2: Example of concurrent result assignment using DECO. do_work will be run in parallel
and the results assigned to datalkey] at synchronization time. Also note the lack of a call to .wait(),
which the @synchronized decorator handles automatically.

decorated with the Qconcurrent decorator, and
a call to function.wait() is added after the loop
body, as shown in Figure[Il As long as calls to
the function do not require results from previ-
ous calls of the function, nothing else is needed
to have work dispatched to multiple processes
and run in parallel.

4.1 Argument Proxying

DECO operates by replacing the decorated con-
current function with a function which instead
passes its arguments to work threads. When
a mutable object is passed as an argument to
the concurrent function DECO replaces it with
a proxy object that appears, when read, the
same as the original object but, when writ-
ten to, records mutation operations. Mutations
in this paper will refer only to square bracket
operations or get and set operations. Typical
mutable objects include lists and dictionaries
but DECO also supports any object that im-
plements __getitem__ and __setitem__. Any mu-
tation operations in worker processes are syn-
chronized back to the main process which then
applies them in a deterministic order; opera-
tions resulting from a latter call to the concur-
rent function are the latest to be applied. This
process is illustrated in Figure This muta-
tion synchronization happens only after a syn-
chronization event which the programmer can
insert manually but generally will be automati-

cally inserted by DECO.

Process 1
1:1
Main Process a Main Process
1:0 1:1
2: 0 Process 2 2: 4
= 1:0
2:4

Figure 3: Hlustration of mutation synchroniza-
tion

4.2 Free Variable Proxying

In Python, module globals are created at mod-
ule load time and mutations to them would not
be reflected in the worker processes created by
DECO. To enable use and mutation of global
variables in worker processes, we parse and in-
spect the function body AST for free variables
at time of decoration. Global values used in the
function are then wrapped in proxy objects at
call time, synchronizing their current values and
propagating back any mutations that take place
in the concurrent function. While this is an in-
teresting feature, we hope programmers gener-
ally avoid mutating global variables.

#O0riginal AST

Assign (Subscript (target , index), Call(concurrent, args))

#Modified AST
Call (concurrent . assign ,

(target , index) + args)

Figure 4: Illustration of modifications DECO makes to @synchronized functions, replacing assign-
ments of the result of concurrent functions with calls to concurrent.assign which allows assignments

to be performed at synchronization events

4.3 Automatic Synchronization

Avoiding explicit synchronization is an impor-
tant goal of DECO because it otherwise requires
programmers to have some experience with con-
current programming. In Figure synchro-
nization happens explicitly with a call to wait(),
but in Figure [2| synchronization is inserted au-
tomatically before any references to data mu-
tated by the concurrent function. These inser-
tions are made by the @synchronized decora-
tor, which traverses the synchronized function’s
AST recursively tracking potentially mutated
data. When it encounters a later reference to
one of the mutated data it first inserts calls to
wait().
piled and replaces the original decorated syn-
chronize function when it’s called in a user pro-
gram.

This modified function is then recom-

4.4 Assignment of Concurrent Re-
sults

Typically when writing serial programs, pro-
grammers are accustomed to directly accessing
and assigning the return value of their functions.
Migrating to multiprocessing in Python means
refactoring these assignments to happen after
the results have been produced. In DECO, if the
@synchronized decorator is used, this rewrite
will happen automatically in certain cases. If
the assignments being made are to an indexed
object, like lists or dicts, DECO will keep track
of which results should go where and automat-
ically perform the assignments when synchro-
nization occurs, illustrated in Figure 2l This is
made possible by rewriting the @synchronized

function, replacing assignments of concurrent
function results to a different call to the con-
current function allowing it to record the in-
dexed object and the index as shown in Fig-
ure This feature allows our approach to be
applied to even more cases of serial programs
without requiring a rewrite.

4.5 Index Based Mutation

We believe that the DECO programming model
very closely mimics simpler serial programming
and that this is due almost entirely to the lim-
itations we impose for index based mutation
only. Every operation that is synchronized is ef-
fectively a four-tuple of data containing a time
stamp, a reference to the mutable object, the
index being assigned to, and the value being
assigned to it. This is important because it en-
forces thread safety, allowing us to remove most
explicit synchronization. Because synchroniza-
tion happens only at certain points, each worker
process reads and writes to an effectively frozen
version of otherwise mutable objects, eliminat-
ing race conditions. With that limitation in
mind, a scientific programmer has a defined pro-
gramming model to follow, giving them a clear
goal when writing concurrent programs with
DECO. Index based mutation limits program-
mers enough to provide safe parallel computing,
but not too much to limit the utility of the re-
sulting code.

5 Results

Because DECO uses Python’s multiprocessing
pool to parallelize operations, it performs al-

DECO Speedup with Varying Number of Worker Processes

Inverse normalized execution time (speedup)

—8—05ms
—o— 1 ms
5 ms
—8— 10ms
—8— 250 ms

Number of processes

Figure 5: Benchmark timing results, lines represent separate concurrent function execution du-
rations. The benchmark is a best case scenario, it simply calls time.sleep() so it produces no
interference between cores and minimizes IPC overhead.

most identically to a program that was paral-
lelized manually using a pool. The pool API is
a little obtuse to begin with, as such we consider
our simplification of the API a good result on its
own. Adding to that the flexibility of mutating
function arguments inside the worker processes
and automatic assignment rewriting, we believe
DECO is a great improvement over the built in
Python multiprocessing library. The simplifi-
cation of the API comes at no noticeable differ-
ence in performance which makes DECO a great
alternative to an already great multiprocessing
library.

5.1 IPC Overhead and Limitations

We find the inter process communication (IPC)
overhead to be very low in multiprocessing.pool
and consider it nearly ideal in terms of speedup
when converting a serial program to parallel.
However, pool is not a panacea so neither is
DECO, there is a limit as to what functions
will benefit from our approach. We bench-
marked DECO with an example MD5 hashing
workload and compared it to synchronous func-
tion calls running in standard single threaded

Python. We varied the number of hashes com-
puted in each call to the worker function to pro-
duce different lengths of execution for each call.
As shown in Figure [6] our benchmarks suggest
that DECQO’s multiprocessing model begins to
overcome overhead limitations when the con-
current function takes longer than 1 millisec-
ond to execute. Figure|5|also demonstrates that
the effect of overhead becomes increasingly se-
vere as the number of workers increases. This
number will vary between machines and appli-
cations, but we consider 1 millisecond to be a
reasonable lower bound on the execution length
of targetable concurrent functions.

6 Future Work

Improvements could be made to the argument
proxying and mutation synchronization tech-
nique as it currently is implemented in DECO.
Presently mutations are only detected at top
level arguments, meaning that mutations of ele-
ments of an argument will not be synchronized.
We could improve our argument proxying in
order to avoid this limitation. When an ele-

Comparison of MD5 HashesISec for Different Function Call Lengths

hashes/second
e

—8— Python Single
Threaded

—e— DECO (3
Warkers)

0.m 01

1 10

Length of hash function call execution (ms)

Figure 6: Benchmark results showing the crossover point at which DECO multiprocess overhead
becomes negligible compared to the performance gains of parallelization.

ment is read from a proxy, rather than return-
ing the raw value, DECO could return a proxy
of the element. This proxying of argument ele-
ments could happen recursively, and in this way
DECO could synchronize all forms of argument
mutation.

6.1 Learning From Pydron

While investigating Pydron, we saw useful fea-
tures we would like to include in DECO in the
future. First Pydron uses data flow analysis to
parallelize the @synchronized function. Incor-
porating data flow analysis into DECO could
allow us to relax restrictions on index only based
mutation, but up until now we have specifically
avoided this in order to keep the library simple
and concise. In the future we would like to con-
sider methods of relaxing our restrictions, which
may include implementing data flow analysis.
The concurrent programming model found in
DECO and Pydron is easily extensible to forms
of parallel computing other than threads/pro-
cesses. In fact Pydron supports several varieties
of cloud computing by using libcloud which al-
lows it to run on Amazon’s EC2, Digital Ocean

and many other cloud providers. In our future
work we would like to support libcloud as well
to increase DECQO’s generality and make it more
useful for programs that exhibit extreme paral-
lelism.

7 Conclusion

We have proposed DECO, a simplification of
concurrent programming techniques targeted at
programmers with little understanding of con-
current programming. Taking inspiration from
Pydron, we hope our technique can be use-
ful to scientific programmers who have embar-
rassingly parallel programs that would other-
wise execute in serial. Our technique maintains
the performance of traditional Python multipro-
cessing but provides a simpler interface, mak-
ing programming with DECO appear more like
serial programming. All things considered we
think DECO is close to the simplest abstraction
for concurrent programming in the Python lan-
guage while maintaining as much performance
as possible.

References

1]

R. Choy, A. Edleman, J. R. Gilbert,
V. Shah, and D. Cheng. Star-p: High pro-
ductivity parallel computing. Technical re-
port, DTIC Document, 2004.

P. Den Hartog and A. Sherman. Edsm:
An extensible system for distributed shared
memory. Technical report, University of
Wisconsin - Madison, 2015.

J. Diaz, C. Munoz-Caro, and A. Nino. A
survey of parallel programming models and
tools in the multi and many-core era. Par-
allel and Distributed Systems, IEEE Trans-
actions on, 23(8):1369-1386, 2012.

S. C. Muller, G. Alonso, and A. Csillaghy.
Scaling astroinformatics: Python + auto-
matic parallelization. Computer, 47(9):41-
47, 2014.

C. M. Pancake and D. Bergmark. Do par-
allel languages respond to the needs of sci-
entific programmers? Computer, 23(12):13~
23, 1990.

	Introduction
	Related Work
	Decorated Concurrency
	Using DECO
	Argument Proxying
	Free Variable Proxying
	Automatic Synchronization
	Assignment of Concurrent Results
	Index Based Mutation

	Results
	IPC Overhead and Limitations

	Future Work
	Learning From Pydron

	Conclusion

